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We consider the performance of the finite element method on a vector supercom-

puter. The computationaUy intensive parts of the finite element method are typically

the individual element forms and the solution of the global stiffness matrix both of which

are vectorized in high performance codes. To further increase throughput, new algo-

rithms are needed. We compare a multifrontal sparse solver to a traditional skyline

solver in a finite element code on a vector supercomputer. The multifrontal solver uses

the Multiple-Minimum Degree reordering heuristic to reduce the number of operations

required to factor a sparse matrix and full matrix computational kernels (e.g. BLAS3)

to enhance vector performance. The net result is an order-of-magnitude reduction in run

time for a finite element application on one processor of a Cray X-MP.



Introduction

The finite element method is a powerful tool for solving differential equations arising in:

continuum mechanics, structural analysis, and computational fluid dynamics (CFD) as

well as many other applications. Because these problems are so large and time consuming,

it is only natural to use the largest and fastest computers available to solve them. Today

this means using vector machines llke the Cray X-MP. In a previous paper (King et al.,

1990), a strategy for vectorizing the finite dement method was discussed in the context

of ConMan, a geophysical CFD program. This paper builds upon this work, describing

the incorporation of a multifrontal sparse solver into ConMan.

Any finite dement algorithm consists of two main computational tasks: forming the

global matrix and then solving this large sparse system. For high performance both the

dement forms and the sparse solver need to be optimized. Because of the flexibility of

the finite dement method, both in the arbitrary nature of the domain and grid and the

flexibility of the boundary conditions, the process of forming and assembling the global

matrix equation is more computationally intensive than most finite difference or spectral

methods. In fact, some problems (e.g., explicit methods and algorithms for non-linear

problems) are dominated by the formation of the matrix, not the solution.

Usually however, the major amount of computation in a finite element code is in the

solution of the large, sparse, global matrix. The matrices resulting from finite dement

discretizations are often ill-conditioned. The reasons for this include the non-uniform

structure of the grid and the enforcement of constraints such as incompressibility. There-



fore, in general iterative solvers do not perform well on these problems and direct methods

tend to be used instead. Historically, these have been band or skyline solvers (Zienkiewicz,

1977) that are relatively easily vectorized. General sparse solvers (George and Liu, 1981)

were not used because, while they often performed less arithmetic operations and required

less storage, they didn't vectorize well. However, over the course of the last decade, mul-

tifrontal (Duff, 1986; Ashcraft, 1987) and supernodal general sparse methods (Ashcraft,

1987; Simon et al., 1989) have been developed that combine asymptotic vector computa-

tional speed (i.e., MFLOPS) with minimal arithmetic operations. As this paper shows,

incorporation of one of these sparse solvers has a dramatic effect upon the performance

of a finite element application.

For completeness, this paper begins in Section 1 with a discussion of vectorization

modifications to the element form routines. It then describes the competing sparse matrix

solvers in Section 2. Opportunities for exploiting parallel aspects of the element forms

and the multifrontal sparse solver will be mentioned. Section 3 will then demonstrate

the enhanced performance of ConMan on single CPU vector machines. Computational

speeds approaching half the theoretical machine limit for the entire code, including I/O

and subroutine overheads, is demonstrated using standard Fortran, without hand coding

routines in assembly language. Finally, conclusions and suggestions for future work are

presented in Section 4.



Results and Discussion

1. Finite Element Assembly

The process of assembling the global matrix equation, called the stiffness matrix, involves

three tasks; localizing the data for each element from global data arrays, forming the

element stiffness matrix, and then assembling the element stiffness matrix into the right

coefficients in the global stiffness matrix. This is clone using indirect referencing, where

an array called the lrn or "location matrix _ is used to gather the global data into local

work arrays and scatter the element stiffness matrix into the global stiffness matrix. The

lrn array takes the element number and the local node number as arguments and its value

is the corresponding equation number in the global stiffness matrix. Table 1 shows the

values of the Irn array for a simple grid of bilinear elements with one degree of freedom

per node as shown in Figure 1.

Most finite element programs use an element level algorithm; all operations are per-

formed for a given element which is then assembled into the global matrix equation. This

approach does not work well on vector machines because there are very few vector op-

erations at the element level and the vector lengths are short. Fortunately, forming the

element equations involves repeating the same operations for each element and there are

typically thousands of elements in a finite element problem. Furthermore, each element

is independent of the others. Therefore, one can take advantage of the parallel nature of

the element forms by performing the operations which would normally be done of a single



element on a block of independent elements using vector arithmetic operations that span

the entire block. This requires slight modifications to the data structures but no major

changes to the algorithms.

Assembly of the dement stiffness matrices into the global matrix equation poses a

potential problem when processing the dements in vectors. Consider bilinear dements

with one degree of freedom per node as in Figure 1. When assembling the equation for

global degree of freedom 5, there is a contribution from elements 1, 2, 3 and 4 (element

identifiers are circled). If any of these four dements are grouped in the same vector

block, then the value of the global matrix for equation 5 may be updated incorrectly.

This is an example of a simple vector dependency. To prevent it, one needs to make

sure that no coefficient in the global stiffness matrix is updated twice from within the

same vector. Independence can be assured by requiring that no dement in a vector share

nodes with any other element in the same vector. For bilinear quadrilateral dements,

this is accomplished by separating the dements into groups using a "four-color" scheme

as shown in Figure 2. The coloring scheme can be easily extended to more complicated

grids containing mixtures of triangles and quadrilaterals as weU as higher dimensional

grids.

In practice, collecting dements into these blocks can be implemented by reordering

the/m array, which need only be performed once for each grid used and can be done

as part of the initial set up. In the dement form routines there are only a few minor

changes required to avoid vector dependencies. These are illustrated by the two fragments



of Fortran code in Figure 3. First loops over elements are replaced by two loops, an outer

loop over element blocks and an inner loop over elements within the block. The inner

loop can be safely vectorized because of the reordering of/m. Also, loops over the local

element degrees of freedom are unrolled since they would otherwise be too short to achieve

asymptotic vector speed (typically length 4 or 8 for bilinear quadrilateral elements see,

Figure 3).

The amount of storage needed to form a block of elements is directly related to the

size of the block. Only a few blocks are necessary to avoid vector dependencies, and as

this storage is transient, it is useful to further subdivide the blocks for most problems.

For register based machines (e.g., Cray, Convex, A]liant, Stardent), the ideal block size

is the vector register length. This temporary storage is insignificant compared to the size

of the global matrix.

Finally, the blocks of elements can be assembled by different processors as long as

interprocessor write dependencies are prevented. This can be accomplished without

undo synchronization overheads by having the processors accumulate their coefficients

into independent subsets of the global stiffness matrix. This restriction is enforced on

hypercubes by the independent address spaces provided for each processor. Lyzenga,

Raefsky and Nour-Omid (1988) have demonstrated speed-ups close to the peak parallel

efficiency of such machines using this method. Note that coloring can be done within

each of the domains for parallel vector implementations.



2. Factorization

Usually the solution of the global matrix dominates the computation in a finite dement

code. Iterative solvers like preconditioned conjugate gradients or multigrid can be the

fastest methods for solving these problems provided that the number of iterations needed

for the solution to converge is small. Iterative solvers axe also the most effcient in terms

of storage. Because of this much attention has been given to using iterative methods for

finite element codes (Ferencz, 1989).

Unfortunately, in many finite element methods the stiffness matrices axe ill-

conditioned. As a result, the number of iterations required for convergence is so large that

often direct solvers are used instead of iterative solvers even for many three-dimensional

applications (Hallquist, 1984). The following subsections will discuss first the traditional

band oriented direct sparse solvers, then reorderings which reduce the work performed,

and finally the multifronta] solver.

2.1 Traditional Sparse Solvers

Traditionally, a band or skyline type algorithm is used in vectorized finite element ap-

plications. There are many variations. The half bandwidth of a matrix, #0, is defined

to be the maximum li - Jl such that a coeffcient of the matrix A(i,j) is not equal to

zero. All coefficients within the band (e.g., A(i,j) : Ii -Jl <- 8) axe assumed to be

nonzero while those outside axe zero. This extremely simple structure permits one to

easily implement very fast vectorized computational kernels based upon outer products.
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All vector operations can be performed with a stride of one and the vector lengths equal

ft. As a result, band solvers achieve speeds approaching the asymptotic peak of a vector

processor.

One disadvantage of band solvers is that the bandwidth is determined by the maxi-

mum distance from the diagonal of a nonzero coefficient. Should this not be representative

of the width of other rows, then many zeros will be incorporated within the band, adding

unnecessary storage and operations. Envelope methods reduce these overheads by locally

varying the bandwidth to better fit the nonzero structure of the matrix. Of course, this

requires somewhat more complicated data structures to implement.

Often, operations can be further reduced by using skyline solvers. Each column in

the upper triangle is assumed to fill in between its first nonzero entry and the diagonal

as shown in Figure 4. Rows in the lower triangle fill in between their leftmost nonzero

coefficient and the diagonal. While this reduces storage and operation counts, it doesn't

come without a price. Updates to a column generated by the elimination of a previous

column are accumulated with inner-products, a = a + _'=1 b(i) • c(i). This requires a

vector reduction which cannot run at peak rates on high performance pipelined machines

where the floating point adders have multiple pipeline stages.

Figure 5 contrasts the above sparse solvers. Suppose one wishes to factor a matrix

with the structure shown in Figure 5a. A strict band solver would fill in and operate on

all elements within the shaded area of in Figure 5b. The envelope solver would preserve

the zero structure in the center of the band as depicted in Figure 5c. The skyline solver
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would require the least storage as shown in Figure 5d. It would maintain sparsity in the

upper diagonal block as well as the center of the band. It only suffers fill in the lower

diagonal block.

2.2 Sparse Matrix Reorderings

Both the band and skyline algorithms have the property that they constrain the work

need to factor a sparse matrix to something substantially below the O(N s) of a dense

factorization (where N is the number of equations). If one takes as a model problem a

square grid, with n nodes on a side (n - x/_), then it is easy to show that the operation

count of a band or skyline factorization of the corresponding sparse matrix would be

O(n4). If the grid has a more complicated structure, heuristics such as Reverse Cuthill-

McKee (RCM) (George, 1971) or Gibbs-Poole-Stockmeyer (GPS) (Gibbs et al., 1976) can

be used to reorder the equations in such a way as to minimize the bandwidth or profile

(i.e., number of nonzeros in a skyline algorithm) and thus the cost of the factorization.

However, one can usually reduce the operation count of a sparse matrix factoriza-

tion even further. For the above mentioned model problem the Nested Dissection (ND)

algorithm (George, 1973) splits the grid into two disjoint halves by removing a column

of vertices from the center of the square. These vertices, called a separator, correspond

to the last equations eliminated. The effect is depicted in Figure 6 where the vertical

separator corresponds to the dense block at the lower right-hand side of the matrix. The

remaining diagonal blocks are disconnected. The dissection process is then applied re-
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cursively to the two halves of the grid. The resulting sparse matrix can be factored with

O(n s) operations. Unfortunately, for more complicated grids it becomes very difficult to

find acceptable separators.

Another heuristic that substantially reduces the operations needed to factor a sparse

matrix is the Multiple Minimum Degree (MMD) algorithm (George and Liu, 1987). It

elin_nates an independent set of equations of minimum degree (i.e., lowest number of off-

diagonal nonzeros), updates the remaining matrix, and then repeats the process. For the

model problem, the operation count is close to that of the ND algorithm. Furthermore,

it is based on a local optimization (minimum degree) that obviates any need for global

knowledge of the structure of the grid. As a result, it performs well on unstructured

grids as well and has become the reordering of choice for many sparse matrix codes.

Implementations of the MMD heuristic are now available that reorder a sparse matrix in

roughly the time it takes to perform one factorization. For transient non-linear problems,

where the same grid is used many times, this overhead is quite reasonable.

One way of expressing the results of any of the above reorderings is through the use

of an elimination precedence graph or elimination tree (Schrieber, 1982). The root of the

elimination tree is the last equation in the matrix to be eliminated. Its children in the

tree must be eliminated before it is. They are independent of one another and may be

processed in any order, even concurrently. Figure 7 shows the elimination tree for a 5

by 5 grid reordered using the ND algorithm. The Nested Dissection algorithm generates

the tree by finding the root first and the leaves last. For this small problem, the MMD
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algorithm generates the same ordering, only it finds the leaves of the tree first and the

root last. Both the ND and MMD algorithms have the effect of scattering non-zeros

away from the diagonal and generating short, bushy elimination trees. In the process,

they break up the simple, unit stride vectors that allow the band and skyline algorithms

to achieve high computational speed. In contrast, the elimination tree for a minimum

bandwidth ordering, in this case the natural ordering, would simply be a line, starting

at 1 and ending at 25.

2.3 Multifrontal Sparse Solver

The multifrontal algorithm attempts to combine the best of two seeming incompatible

goals. First, it allows an application to use a reordering such as MMD, which minimizes

the work required to factor a matrix. Arithmetic operations are then performed with

dense matrix arithmetic kernels that achieve very high vector processing speeds. The

next four paragraphs will describe the multifrontal algorithm. It will then be illustrated

with an example.

The multifrontal algorithm selects the order in which to eliminate the equations by

performing a post-order traversal of the elimination tree. Starting from the root, we

push each equation onto a stack and defer its elimination until its children have been

processed. When a leaf in the tree is encountered, it can be diminated immediately. The

equations in Figure 7 could be eliminated in the following order: 1 2 6 7 5 4 10 9 3 8 21

22 16 17 25 24 20 19 23 18 11 12 13 14 15.
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To eliminate an equation, it is collected into a small dense matrix called the front.

First the front is cleared. Then the initial values for the pivot equation are scattered

into the front. These values are the diagonal, the nonzeros below the diagonal in the

pivot colunm, and those in the pivot row above the diagonal. Finally, they are added

to any updates generated when factoring the pivot equation's children in the elimination

tree. These operations represent overhead associated with the multifrontal algorithm

and are greatly assisted by the presence of hardware support for indirect addressing (i.e.,

gather/scatter), chaining, and multiple memory ports in a vector processor.

Once an equation's front has been assembled, the equation can be eliminated. The

diagonal is inverted, the pivot column normalized and negated, and then the Schur

complement computed by an outer product of the pivot row and the pivot column.

Afterwards, the equation's factors are stored away, and its Schur complement placed

upon a stack from which it_be retrieved when needed for the assembly of its parent's

front. Note, storage of this "real stack" represents an additional overhead associated

with the multifrontal method.

The above mentioned overheads are ameliorated by exploiting supernodes. A su-

pernode is one or more equations whose nonzero structures are indistinguishable. If the

equations in a supernode are eliminated together, then their Schur complement can be

computed using a matrix-matrix product. Using loop unrolling and other simple op-

timizations, matrix-matrix products can be performed at near peak speeds on vector

processors. Furthermore, the cost of assembling the front for the supernode is amortized
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over the factorization of many equations, reducing the multifrontal algorithm's overhead.

If the problem is big enough such that the cost of factoring the supernode is significantly

greater than that of assembling it, then the multifrontal algorithm will achieve near peak

computational speed on modern vector machines.

Figure 8 illustrates the multifrontal algorithm by detailing the elimination of 2 equa-

tions from a contrived system of 25 equations. The sparse matrix in Figure 8a corresponds

to the 5 by 5 grid with a 5-point stencil shown in Figure 7a. Zero coefficients are left

blank for clarity. The matrix has been permuted to reflect the ordering in Figure 7b.

The original row and column numbers are displayed along the left side and the top. If

equations 3 and 8 are grouped into a supernode and eliminated together, then Figure 8b

depicts the front after it has been cleared and the initial values scattered into it. Figure

8c contains the real stack with the update matrices ]eft by the elimination of equations

7 and 9. Zeros have been included where coei_cients were cancelled to illustrate the

structure of the sparse matrix. The fully assembled front is shown in Figure 8d. Fig-

ure 8e contains the contents of the front after equations 3 and 8 have been eliminated.

Eliminating equations 3 and 8 together introduces two unnecessary zeros into the front

(coefficients 3,13 and 13,3). However, the updates to equations 11-15 can then be com-

puted with the product of 5x2 and 2x5 matrices. This tradeoff is called "relaxation of

supernode partitions" by Ashcraft (Ashcraft and Grimes, 1987).

The element form routines described in Section 1 and the above mentioned multi-

frontal sparse solver are both highly optimized. If the exchange of data between them
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isn't, then a scalar bottleneck can be introduced. If storage is not an issue, then this is

easily avoided. For each coemcient of each element, the corresponding location in the

global stiffness matrix is computed and stored in a mapping array whose size matches

that of the element stiffness matrix. Prior to formation of the elements, the global stiff-

ness matrix is cleared. Then, each time a block of elements is formed, the corresponding

mapping arrays are used to gather the appropriate coefficients of the global stiffness ma-

trix into a vector which is added to the newly computed values. The mapping array is

then used to scatter the updated coefficients back into the global stiffness matrix. The

entire operation runs at vector stream rates on machines with gather/scatter hardware.

One feature of the above interface is that the finite element application need not be

cognizant of the structure of the reordered matrix. This information is ensconced in the

mapping arrays. The mapping arrays need only be computed once for each grid and their

generation is simply a small one time overhead akin to the matrix reordering.

Finally, there are two rather obvious places to exploit concurrency in the multifrontal

algorithm. The first is in factorization of the dense frontal matrices. After each pivot

equation (or group thereof) is eliminated, the remaining columns can be updated by

multiple processors. This "column wrap" distribution of the updates has been performed

successfully on hypercubes (Moler, 1986), where the programmer controls the distribution

of data, and on shared memory machines, where modem compilers can dynamically

distribute loops. The latter process is called "Autotasking _ on Cray machines. The

second place to exploit concurrency is by simultaneously assembling and factoring fronts
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from multiple branches of the elimination tree. This has been the key to the success

of concurrent sparse matrix factorization algorithms on hypercubes (Lucas et aI., 1987;

George et al., 1986; Ashcraft et al., 1990) and has been applied to vector supercomputers

as well (Duff and Reid, 1986).

3. ConMan: An Example from Geophysical CFD

ConMan (CONvective MANtle), the application used here to illustrate the speed-up

arising from both vectorized element forms and the multifrontal solver is a finite element

code used for studying convection in the Earth's mantle (King and Hager, 1989; King et

al., 1990). It is a 2-D, incompressible, creep-flow program that uses the penalty method

to enforce incompressibility in the velocity equations and Streamline-Upwind Petrov-

Galerkin weighting functions for the advection terms in the temperature equation. The

time-stepping is done with a second order predictor-corrector algorithm so that the time

evolution of the flow can be accurately followed. This code has been benchmarked against

other Cartesian convection codes (Travis et al., 1990) and is more fully described in King

et al. (1990).

At the elevated temperatures in the Earth's interior, rocks respond to stress by slow

creeping flow. Thermal convection is the driving mechanism for plate tectonics and is

the dominant mechanism for heat transfer in the Earth. In order to simulate rigid plates

and a ductile mantle, a temperature-dependent, non-linear viscosity is required. The

variation in effective viscosity coupled with the enforcement of incompressibility leads to
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ill-conditioned matrices. Therefore, a direct sparse matrix solver for ConMan is needed.

For temperature-dependent problems the velocity matrix is reformed and factored every

time-step. Thus, for these problems the sparse matrix factorization time dominates all

other routines.

Results are presented contrasting the use of multifrontal and skyline solvers, per-

forming symmetric factorizations. For the problems studied, both computational speed

(i.e., MFLOP rates) as well as run time are presented. This illustrates the fact that the

multifrontal algorithm not only does less work, it also achieves higher vector computa-

tional speed. Since users are typically c_arged for CPU time the run time speed-up is

the more important result.

Table 2 shows the parameters for the grids used in the four benchmark problems.

The first three grids are all square regular meshes with uniform size elements. The

resulting stiffness matrices are banded. This provides a test of the algorithms as a

function of an increasing number of operations. The last benchmark has a periodic

boundary condition where fluid leaving the left side of the box reenters the right side.

This gives a matrix structure similar to the pattern in Figure 4. BM4 is typical of the type

of problems ConMan is actually used for in geophysical fluid dynamics. For this problem

the multifrontal solver is noticeably better at reducing the storage and the amount of

computations.

The execution times for the four problems on one processor of a Cray X-MP are

shown in Table 3. The three columns correspond to the skyline version of ConMan
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with and without vectorization enabled and the vectorized multifrontal version. They

illustrate the improvements in computational speed gained both by the vectorization

enhancements to the dement forms as well as the addition of the multifrontal sparse

solver. The total times for the three versions of the four benchmarks are summarized in

Figure 9. The rows of Table 3 break out the time spent in various portions of the code.

The routines f_vstf, f_tn'es, and f.tres are the finite dement assemble and form routines

for the velocity stiffness matrix, velocity right hand side and temperature fight hand

side respectively. The routines factor and back are for the matrix factorization and the

forward-reduction/back-substitution. The routine symbol does the matrix reordering and

symbolic factorization and is only used in the multifrontai code. The natural ordering

is optimal for the skyline solver so no reordering is needed. Since the meshes do not

change with time, the reordering for the multifrontal solver is only done once while the

factorization and backsolves are done every time step. The itemized times in Table 3 do

not add up to the total because there are other routines for the grid generation, output,

etc. The results for BM4 show that for real problems the multifrontal solver performs an

order of magnitude faster than the vectorized skyline solver. All these results axe using

Fortran compiled with the cft77 compiler. Using Cray's optimized scilib routine SMXPY

in the multifrontal solver increases its performance another 15%.

Figure 10 shows how the dement form times improve as a function of grid size. For

BM1, BM2 and BM3, the operations in the dement routines increase linearly with the

total number of elements ( O(n 2) where n is the number of dements on a side in an
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n × n mesh). This is reflected by the quadratic shape of the scalar time vs. n curve. The

vector time grows much more slowly with increasing number of elements. This is clue to

the increasing ei_ciency of the vector functional units as the problem size and hence the

vector lengths increase. There are more operations over which to amortize the cost of

starting up vector operations.

Figure 11 shows the breakdown in routine f_vstf between the computation time and

the time to assemble the global stiffness matrix. Assembling the global stiffness matrix

is where the indirect addressing costs are the worst because the element matrices are

being scattered into the sparse matrix structure. This represents the interface between

the finite element assembly and the multifrontal solver. Figure 11 clearly shows that this

is not a bottleneck.

Figure 12 depicts the time spent factoring the stiffness matrix for BM1, BM2 and

BM3. It shows that like the element formations, the performance of the multifrontal

solver improves with increasing grid size. In contrast, the skyline solver which is domi-

nated by vector reductions shows the same trend as the scalar finite element routine in

Figure 10. For the smaller grids, the full matrices factored in the multifrontal algorithm

are small which corresponds to short, suboptimal vector lengths. For the larger problems,

the average vector length is greater, increasing vector computational speed.

When comparing the scalar to multifrontal results, remember that there are three

components of speed-up in the these results. The first is the increase in computational

speed afforded by vectorizing the element formation routines. The second is the reduction
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in operations performed by using the MMD reordering for the sparse solver. The third

is the switch from the use of inner products in the skyline solver to outer products in

the dense matrix computational kernels in the multifrontal solver. The total speed-up

exceeds the theoretical scalar/vector speed-up (210/9.5 on the Cray X-MP) because the

speed-up includes the reduced number of operations performed by the multifrontal solver.

Finally, note that the scalar times for the element routines (fotres, fortes, fovstj)

are greater than the time for the multifrontal sparse matrix fsctorization. If the only

optimization were the new equation solver, then the run time would be dominated by

the element formation, and only a marginal speed-up would be seen.

4. Conclusions

The multifrontal solver requires fewer operations and achieves higher vector computa-

tional speed than the skyline solver for the finite element problems considered. For large

problems, the difference in CPU time required by the solvers is nearly a factor of twelve

and the the entire application runs 9.5 times faster. The speedup perceived by the user is

typically even greater. The multifrontal version of the code requires less storage and less

CPU time so it can be run in higher priority scheduling queues. For three dimensional

problems the difference between the skyline and multifrontal solver will be even larger.

Future work needs to proceed in two directions. First, there needs to be more work

on heuristics for reordering unstructured grids. For 3-D rectangular grids, for which it

is easy to contrast the MMD algorithm to the asymptotically optimal ND, the MMD
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reordering can create two to three times the work of a ND reordering. Secondly, the

use of multiple processors needs to be explored. Until more effective iterative solvers are

devised, parallel processing affords the next obvious opportunity for improvement in the

computational speed of finite element applications.

A final note: the original version of ConMan, run on a VAX 11/780 took about 8

hours of CPU time for BM1. Thus the total speed-up as perceived by the user, including

improvements in both the algorithm and the hardware, is 450. It is important to remem-

ber that this is for the smallest of the sample problems. Larger ones, such as BM4, were

simply not feasible.
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Figure 1 The four bilinear quadrilateral elements (1-4) all contribute to the global nodal

equation at node 5, which they all share. The element numbers are circled and the global

node numbers are not. The LM array for elements 1-4 are listed in Table 1.

Figure 2 The four color ordering scheme used in ConMan. Note that the shaded elements

(group I) do not share nodes with any other group I element. This group can safely be

operated on with a vector operation.

Figure 3 Sample psuedocode for both scalar (a) and vector (b) finite element right

hand side assembly routine. The loop over the dements (numel) in (a) is replaced by a

loop over BLOCK and 10ops over the dements within the block (iv) in (b). Short loops

over the number of local nodes (nen) in (a) are unrolled in (b). numel is the number

of elements, numblk is the number of dement blocks, nvec is the length of the element

block and nipt is the number of integration points within an element. The lm array maps

dements and local nodes tO global equation numbers.

Figure 4 A representation of the skyline storage scheme. X's represent a non-zero matrix

element. Notice that only zeros in a column below a non-zero are stored.

Figure 5 A contrast of band, envelope and skyline storage. An initial nonzero structure is

depicted in 5a. The location that would be filled in and operated upon by band, envelope,

and skyline algorithms are depicted in 5b, 5c, and 5d respectively. The diagonals as well
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as the initial non-zero rows and columns are highlighted.

Figure 6 An example of Nested Dissection. The dissection has been applied twice, first

halving the grid with the vertical separator, then recursively halving the two disjoint

subsets with the horizontal separators. The resulting matrix structure is also depicted.

The empty areas are all logically zero, the dark areas correspond to dense submatrices,

and the gray areas represent the four quadrants of the grid that have not yet been ordered.

Figure 7 A 5 by 5 grid and the elimination tree created by a Nested Dissection ordering.

Figure 8 a) A sample sparse matrix derived from a 5 by 5 grid. The matrix is permuted

to reflect the same ordering as used in Figure 7. The original equation numbers are

displayed to the left of each row. The column permutations are the same as the row

permutations, b) The front after initialization with equations 3 and 8. c) The real stack

containing the update matrices from equations 7 and 9. d) The front after the addition of

update matrices from equations 7 and 9. e) The front after the elimination of equations

3 and 8.

Figure 9 A graphical representation of the total run times (in seconds) for the four

benchmark problems. The numbers above each group represent the ratio of the scalar

skyline execution time to the vector D1V[F execution time.

Figure 10 The execution times (in seconds) for the finite element routines from BM1,

BM2 and BM3 in both scalar and vector modes on the Cray X-MP/18. Notice the
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dramatic increase with grid size for the scalar case.

Figure 11 A breakdown of the execution times (in seconds) for the vectorized finite

element routines shown in Figure 10. The gather/scatter time is mostly due to scattering

the element stiffness matrices into the global stiffness matrix.

Figure 12 The execution times (in seconds) for the vectorized skyline factor and the

vectorized DMF factor for BM1, BM2 and BM3 on the Cray X-MP/18. Notice the

dramatic increase with grid size for the skyline case.

Table Captions

Table 1 A representation of the Im array for Figure 1. The Im array is a two dimensional

array which has dimensions number-of-elements by number-of-local-nodes. The value of

the Im entry is the global equation number. For element 2 local node 1 the global equation

number is 4.

Table 2 Data for the four benchmark problems. The average bandwidth is defined to be

the maximum ]i -Jl where A(id) is not equal to zero. Time steps is the number of times

the matrix is factored (for BM3 and BM4 scalar runs were only run 50 time steps a_nd

timing results were multiplied by 10). The memory size is in Cray megawords (where one

floating point number takes one word) and is taken from the Cray hardware performance

monitor.



29

Table 3 Timing data (in seconds) from Cray X-MP/18 for the four benchmark problems.

Times are reported for both scalar and vector runs using the skyline solver but only

vector for the DMF solver. Compiler directives were used to force vectorization where

ever necessary but no assembly language kernels or library routines were used.
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LM Array for the grid in Figure 1

Element Local Node

1

2

3

4

1 2 3 4

1 4 5 2

4 ? 8 5

5 8 9 6

2 5 6. 3



Data for ConMan Benchmarks

Benchmark BM1 BM2 BM3 BM4

Number of Elements in the X direction

Number of Elements in the Z direction

Boundary Conditions

Number of Active Equations

Average Bandwidth

Time steps
Total memory skyline (MW)

Total memory dmf (MW)

Millions of Operations (factor skyline)

Millions of Operations (factor dmf)

32 64 96 190

32 64 96 48

h h periodic
2046 8190 18430 18238

65 129 193 190t

500 500 500_ 500_
0.13 1.06 3.6 3.5

0.32 1.4 3.2 3.3

13 204 1,000 1,000

9.7 90 298 352

_estimated

:l:dmf 500 steps, scalar 50 steps × 10



ConMan Benchmarks
all times in seconds from Cray X-MP/18

Benchmark routine

scalar vector vector

skyline skyline dmf

BMI f_vstf:

f_vres:

f_tres:

factor:

back-sly:

symbolic:
total:

111.2 18.0 13.7

3.6 0.7 0.7

38.3 4.0 4.0

536.8 357.8 47.3

21.0 9.0 8.8

-- 0.4

722.6 392.0 77.4

BM2 f_vstf:

f_vres:
f_tres:

factor:

back-sly:

symbolic:
total:

462.7 75.5 55.7

14.8 2.7 2.7

152.2 16.3 15.5

6270.0 3042.3 296.0

148.9 37.6 38.6

D u 1.6

7122.4 3184.6 420.0

BM3 f_vstf:

f_vres:

f_tres:
factor:

back-sly:

symbolic:
total:

1247.0 176.4 128.2

40.0 6.3 6.3

341.0 36.5 36.5

32383.0 10643.3 843.2

561.0 98.7 91.3

u 3.6

35350.0 10984.0 1129.7

BM4 f_vstf:

f_vres:

f_tres:

factor:

back-sly:

symbolic:
total:

1245.0 132.4 87.9

3g.0 4.0 4.0

342.0 36.1 36.1

3089.0 10787.9 915.3

555.0 97.2 91.5

-- 3.7

33854.0 11080.3 1161.0

_aV,_ 3
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Scalar Pseudocode

do • = 1, numel

do n = 1, hen

datalocal(n) 4- data C |raCe,n) )
enddo

doL= 1. nipt
do n = 1. nen

kJo--I(.) ,- kJo_,lC.)+
data/ocalCn)*$hlCn,L)*det(L )

enddo

enddo

do n=l,nen

kClmCe,n)) *- k(ImCe,n)) + kJocal(n)
enddo

enddo

Vector Pseudocode

do block --1,numblk

do iv -- 1. nve¢

dataJo.ICiv,1) .- dataCImCivel,1))

dataJocal(iv.2) .-- dataOmOvel,2))

dataJocal(iv,3) _-- dataClmCivel,3))

dataJocal(iv,4) .- data(ImCivel,4))
enddo

doL= 1, nipt
do iv = 1, nvec

kJocalCiv.1) -- kJocalCiv.1) +
datmJocalOv,1)*shl(1,L)*detCiv,L)

kJocal(iv,2) ,,-- kJocalCiv,2) +

dataJocal(iv,2)*shlC1,L)*detCiv, L)

kJocal(iv,3) ,-- k.JocalCiv,3) +

dataJocalCiv.3)*shlC1,L)*detCiv,L)

kJocalCiv,4) ,-- kJocalCiv,4 ) +
d.t.JocalCiv,4)*shl(1,L)*detCiv, L)

enddo

enddo

do iv = 1, nvec

kClm(ivel.1)) *- kCtm(ivel,1)) + k/ocalClv,1)

k(ImCivel,2)) ,- kClmCivel,2)) + kJocal(iv,2)

kOmCi_l,3)).- kO_Owl,3))÷ kJo.l(;v,3)
kClm(ivel,4)) *-- kCim(ivel,4)) + k..IocalCiv,4)

enddo

enddo



Skyline Storage
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Initial Nonzero Structure
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Banded Nonzero Structure
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Figure 8a

Sample sparse matrix derived from 5 by 5 grid

and 5 point stencil. Matrix is permuted to reflect

the same ordering as used in Figure 7.
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Figure 8b

Front after initialization

with equations 3 and 8.
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Real Stack containing update matrices

from equations 7 and 9,
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Figure 8d

Front after addition of update

matrices from equations 7 and 9.
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Front after elimination of

equations 3 and 8.
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Finite Element Routines
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